
 1

GN--a Simple and Effective Nonlinear Least-Squares Algorithm for the Open Source
Literature.

Kenneth Klare (kklare@gmail.com) and Guthrie Miller (guthriemiller@gmail.com)

February 21, 2013

Abstract

Although the GN (Gauss-Newton) algorithm was written in the 1980’s, we have recently
simplified the algorithm and updated the Fortran, and we would like to make it available to
others through the open-source literature. The algorithm follows the general guidance given in
the 1983 book by Dennis and Schnabel, using an augmented Gauss-Newton, Levenberg–
Marquardt approach. We have tested the algorithm against 36 difficult nonlinear minimization
problems based on the 1981 article by Moré, Garbow, and Hillstrom. For these test problems
the GN algorithm compares favourably to other minimization routines in terms of 1)
effectiveness (ability to find the solution), 2) efficiency (number of function evaluations required
for convergence), and 3) complexity (number of executable lines of code). The most similar
competing open-source algorithm is the LMDIF algorithm from MINPACK by Garbow,
Hillstrom, and Moré, against which the more detailed comparisons are made.

Running title: GN--a Simple and Effective Nonlinear Least-Squares Algorithm

Keywords: Nonlinear Least squares, nonlinear minimization, robust, optimization, finite-
difference derivatives, augmented Gauss-Newton, Levenberg–Marquard.

 2

1. Introduction

The problem of designing a reliable and efficient minimizer has been around for a long time and
while the favorite version has changed through time, there are some basics. Perhaps the most
basic, assuming differentiability, is to take steps s along the downhill gradient of the sum of
squares f and can be called the Gauss Method, where

fs −∇∝ .

If the step size is small enough, one can be assured that the step will decrease f.

In contrast the Newton Method uses the condition that the gradient is zero at the minimum

() 0=+∇ sxf ,

where x is the current point in parameter space. By first-order Taylor expansion around the
current point, this equation becomes a linear equation for the step.

In real problems, although Newton's method can be very fast near the solution—one step in the
linear case—it may overstep and cause evaluation errors on more difficult nonlinear problems.
The Gauss method usually under-steps and requires too many evaluations.

The algorithm GN (Gauss-Newton) presented here uses the Levenberg–Marquardt[1,2] trust-
region compromise and many ideas from the excellent book by Dennis and Schnabel[3]. The
algorithm is straightforward, and the Fortran is relatively small sized (323 executable lines).

Matrix methods follow Davidon's approach [4] to updating the Hessian matrix and use a search
or a reevaluation dog leg to improve the function and matrix. These methods became the
Davidon-Fletcher-Powell (DFP) method and that was superseded by updating the inverse in the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) [5-8] method. These methods use a line search
along the gradient direction but the trust region method is likely more evaluation efficient and
numerically safer.

We assume that evaluations are expensive. The evaluations may be complex or involve
processing much data. The goal is to get to the best values reliably with the least number of
evaluations. Furthermore, the method is designed to be robust and able to handle most
numerical problems.

The functions to be optimized are often not easy to analytically differentiate and are prone to
errors in the math, so we always use finite differences to form the derivatives. To reduce the
number of evaluations we update the second-derivative matrix until it is not giving results close
to expectations or we have reached what believe to be a solution.

When needed, adding a large number to a residual (penalty) may be used to constrain the
solution.

The very useful set of test problems from the article by Moré, Garbow, and Hillstrom[9] have
been coded in Fortran and are used to validate and tune the algorithm. The GN algorithm was
written in the mid-1980s and has been used with good success by the few individuals who were
aware of it. The intent in publishing this work at this stage is to make the algorithm and the test
problems available to a wider audience through open-access publication. The algorithm is

 3

described in the next section, and the Fortran for the algorithm and the test problems are also
available as supplementary material accompanying this article.

2. The GN Algorithm

The algorithm minimizes f given by

∑
=

≡
m

i
irf

1

2

in terms of the scaled residuals ri , from “the data” and fitting functions, for mi ...1= .

Each residual is some function of the parameters px for np ...1= . In general, the residuals r
can be represented as a Taylor expansion around some starting point r0 in parameter space,

...))((
)(

2
1)(

)(
1,

00
0

2

1
0

0
0 +−−

∂∂
∂

+−
∂

∂
+≅ ∑∑

==

n

qp
qqpp

qp

n

p
pp

p
jj xxxx

xx
xr

xx
x
xr

rr

In a sufficiently small neighborhood of x0, r can be well approximated as linear, depending
linearly on the parameters with coefficients given by the Jacobian matrix

)(0x
x
r

J
p

j
jp ∂

∂
= .

The fundamental quantity f is then given by

∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

m

j

n

p
ppjpj xxJrf

1

2

1
00)(,

neglecting the second derivatives of the residuals, which is justified in a sufficiently small
neighborhood of x0. To simplify the notation,

ppp sxx →− 0 ,

in terms of an iterative “step” s.

Also, to simplify the algebraic manipulations, matrix notation will be used, where a capital letter
denotes a matrix, for example

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
↔

...
...,,
...,,

2221

1211

AA
AA

A

In matrix notation

 4

TTT

ijji
T

ABAB

AA

=

≡

)(
,,

and for a square matrix,

11)()(−− = TT AA

where AT denotes the transpose of matrix A, i.e., rows and columns exchanged. This makes the
sum of squares f ,

f = r + Js()T r + Js() = rT r + sT JT r + rT Js + sT JT Js , (1)

where s and r are column vectors containing the elements sp and ri. In Eq. (1) note that the
matrix J is m (the number of data) rows high by n (the number of parameters) columns wide, s is
a single column with n rows, and Js and r are single columns with m rows. See Appendix B for
an example. In matrix multiplication, for example AB, the number of columns of A must be the
same as the number of rows of B. The product has the number of rows of A and the number of
columns of B.

∑≡
k

jkkiji BAAB ,,,)(.

Our approach to Eq. (1) is to complete the square—a simple but powerful algebraic technique.
For example the quadratic form cbxax ++2 can be rewritten as)4/())2/((22 abcabxa −++ ,
which shows immediately the minimum obtained for)2/(abx −= . Similarly, one can verify
that Eq. (1) can be rewritten as

f = s + (JT J)−1JT r()T

JT J s + (JT J)−1JT r()+ rT I − J(JT J)−1JT()r , (2)

where I is the mm× identity matrix with all 1’s on the diagonal. For the moment, we simply
assume that the nn × “Hessian” matrix JJH T= is nonsingular and can be inverted. From
Eq. (2), one sees immediately the step required to minimize f is given by

rJHs T1−−= .

For a linear problem, the minimum is immediately achieved with this step.

For a nonlinear problem, this step (Newton step) may be too ambitious. You may not decrease f
when you begin climbing the opposite side. Notice from Eq. (1) that the derivative of f near the
origin is given by

()p
T

p

rJ
x
f 2=

∂
∂ .

Therefore a step of the form

 5

μμ
grJs T −≡−=

1

with μ sufficiently large will be a step down the gradient (steepest descent) and will always
decrease f, where we have introduced the notation rJg T≡ . The disadvantage of this
conservative (Gaussian) step is that it may take a very large number of iterations to reach the
minimum, while the Newton step goes immediately to the minimum for a linear problem and for
a well-behaved nonlinear problem gives quadratic convergence near the minimum (the error
eventually decreasing like the square of some factor at each step.) The Levenberg-Marquardt
compromise solution[1,2] is a step of the form

gDHs 12)(−+−= μ , (3)

which becomes the Newton step for small μ and is a Gaussian step for large μ, where D2 is a
positive diagonal scaling matrix. This technique also takes care of possible singularity of H,
because the matrix 2DH μ+ will always be invertible when the diagonal is augmented by some
positive μ . The example of Appendix B may be helpful.

To understand the Levenberg-Marquardt method, note that Eq. (3), for some 0>μ is the
solution of the constrained minimization of the quadratic form given by Eq. (2) subject to the
constraint on step size

() δ≤DsDs T ,

which can be demonstrated by introducing μ as a Lagrange multiplier in the constrained
minimization of Eq. (2).

Therefore, the solution of Eq. (3) represents the minimum of Eq. (2) within the “trust radius” δ .

The notation connected with scaling is simplified by the transformation of variables

j
j

j

jjj

jj
jj

jj

g
D
g

ssD

H
DD

H

→

→

→ ′
′

′
,

,

 ,

under which Eq. (3) becomes gIHs 1)(−+−= μ , where I is the identity matrix. Transformed
variables will be used subsequently.

Scaling is important when there is a vast difference in the natural scale of different parameters.
Many times this is not the case, for example, when the parameters represent the logs of physical
parameters. The log transformation is a good way to normalize the scale and to impose
positivity on the physical parameter. The calculations given in this paper do not use scaling
(iscale = 0), even though some of the problems have large differences in final parameter
values. For these problems we find that scaling is necessary only when using single precision.

 6

The GN algorithm proceeds as follows.

In one mode (NewtStepFirst = .true.), first try a full Newton step, with μ just the
minimum required to prevent singularity (minimum augmentation). If the problem is linear, the
minimum will have been obtained in this one step.

If the function increases, go back and start over using a smaller step (the “Cauchy step”), but
still in the Newton direction. The Cauchy step is the step in the direction g that minimizes the
quadratic given by Eq. (2). One can show that the length of this step is given by

()
Hgg
ggs T

T

C

2/3

= .

It provides a natural step length, without requiring matrix inversion, as fallback when the
Newton step does not decrease f.

The more conservative mode (NewtStepFirst = .false.), which is used in the
calculations given in this paper, does not first try a Newton step but just begins with the Cauchy
step. The large Newton step can sometimes cause numerical problems where the function
cannot be evaluated.

After the first step, one has available an initial f0, a final f after taking the step, and the
derivatives at the initial point. The trust radius is then revised using a quadratic fit based on
these values as described in Appendix C.

For example, consider the Rosenblock test problem (problem 1), which has m = n = 2. The
residuals are defined by

r =
10 x2 − x1

2()
1 − x1

⎛

⎝
⎜

⎞

⎠
⎟ . (4)

Figure 1 shows the steps to the minimum for two different starting points.

 7

128

128

32
8
2

2

8
32

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

 minimum
 starting point

X 2

X1

Figure 1—steps taken to reach the minimum superimposed on a contour plot of the function f for
test problem 1. The number of function evaluations required was 39 or 36 depending on the

starting points.

To provide contrast, Fig. 2 shows the steps to the minimum if there is only one residual defined
as the square root of the sum of squares given by Eq. (4).

128

128

32
8
2

2

8

32

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

 minimum
 starting point

X 2

X1

Figure 2—steps taken to get close to the minimum superimposed on a contour plot of the
function f for test problem 1. In this case there is only one piece of data (m = 1) equal to the

square root of the sums of squares for problem 1. The number of function evaluations required
was much larger than in Fig. 1.

As shown in Fig. 2, if only the function f is available, the algorithm steps down the gradient of f
going quickly down the steep sides to the bottom of the valley, which then is very gently
sloping, and then follows the “stream bed” towards the minimum. In contrast, the Newton step

 8

is mostly at right angles to the steepest descent direction, and stays high until reaching the region
of quadratic convergence at the end.

3. The Test Problems

The 36 test problems used come from a suite published in 1981 [9]. This collection has systems
of nonlinear equations, nonlinear least squares, and unconstrained minimization. The GN
program can treat all of these, overdetermined (m>n) and underdetermined (m<n), in the same
manner as nonlinear equations (m=n). Very large m or n can lead to ill-conditioned problems.
Testing serves several purposes: it is a general check on the coding, it checks the efficiency of
the algorithm, and it is a source of confidence that the algorithm will give a correct answer on
new problems. Even a minor change in the coding needs to be tested.

In some cases, the Hessian without augmentation of the diagonal is singular. One cannot expect
to correctly solve the Hessian matrix’s inherent inversion when the ratio of eigenvalues before
augmentation exceeds the machine precision or the accuracy of the data and equations. The
inverse Hessian is the variance-covariance matrix in a linear uncertainty analysis. However,
except for linear problems, we find this linear analysis to not be a reliable indication of
parameter uncertainties, even if the all second-order derivative terms (found numerically using
GN itself) are included in the Hessian. We find it necessary to do a Monte Carlo analysis where
some large number (say 100) of alternate realizations of the data are generated and the nonlinear
fits repeated (the residual is imagined to represent fit-data divided by the standard deviation of
the data.)

The GN method uses a fair amount of storage for large problems and may have numeric
problems when summing large arrays. Normally double precision is sufficient to handle the
latter problem. Quad precision has been tested but produces almost identical results for these
problems.

One can use either parameter change (stptol) or function decrease (abstol and reltol)
as a stopping criterion. Use abstol and reltol to obtain a specific accuracy in the function
values or stptol to get the positions or other parameters to the accuracy needed. Use stptol
= 1e-4 for about 3-digit accuracy. Use of stptol is appropriate for say placing objects,
defining field strengths, etc. Use abstol and reltol to set what the sum-of-squares of
residuals accuracy is required. Each is limited to the attainable computational accuracy. GN will
stop on the first criterion met. To stop on abstol the function must be less than abstol. To
stop on reltol the change of the function must be less than the maximum of reltol times
the function and abstol.

Table I is a sample run using a Windows XP system, Intel Q9650 processor, and MinGW G95
Fortran (www.mingw.org) compiler with absolute function accuracy abstol= 1 × 10-11,
relative function accuracy reltol= 1 × 10-7, position accuracy xacc = 1 × 10-4 , and
derivative step size = 1 × 10-4. Listed are the problem number, number of residuals (m), number
of parameters (n), iteration count, number of function evaluations, the final value obtained for
the sum of squares, and the function’s name from Moré et al. An iteration involves calculating
the function and possibly all derivatives.

The final parameter values were checked against the correct values. Because of the possibility
of multiple solutions, the starting points were changed from the Moré values in several cases in
order to avoid instability toward secondary solutions. Increasing abstol and reltol results

 9

in fewer evaluations. It was found that abstol and reltol could not be further increased
over the values stated in the previous paragraph and still preserve an error tolerance of 0.005 for
all parameters and all test problems. Decreasing these parameters, in particular reltol,
increased the number of evaluations, in some cases markedly–not for these test problems but for
their modified versions used for the Monte Carlo uncertainty calculations. This dramatic
increase in the number of evaluations for small reltol was not eliminated by going to quad
precision, so it is not just a matter of numerical noise, which could be prevented by imposing a
lower limit on reltol related to the machine precision. The conclusion from all this is that one
must choose the tolerances, in particular reltol, with some care.

 10

Table I—Performance of the GN algorithm for the Moré test problems. The total number of
function evaluations is 2116 for the 36 problems.

prob m n iter evals value Moré function name
1 2 2 22 36 0 0 Rosenbrock
2 2 2 39 61 48.98425 48.9842 Freudenstein & Roth
3 2 2 25 41 8.54E-17 0 Powell badly scaled
4 3 2 27 45 1.41E-22 0 Brown badly scaled
5 3 2 14 24 3.33E-16 0 Beale

6 10 2 24 38 124.3622 124.362 Jennrich & Sampson

7 3 3 16 31 7.48E-20 0 Helical valley

8 15 3 9 18 8.21E-03 8.21E-03 Bard

9 15 3 12 24 1.13E-08 1.13E-08 Gaussian

10 16 3 28 52 87.94586 87.9458 Meyer

11 99 3 34 58 2.20E-16 0 Gulf R & D

12 9 3 8 14 1.47E-12 0 Box 3D

13 4 4 18 34 4.57E-12 0 Powell singular

14 6 4 82 144 1.81E-16 0 Wood
15 11 4 20 44 3.08E-04 3.08E-04 Kowalik & Osborne
16 20 4 60 116 85822.24 85822.2 Brown & Dennis
17 33 5 19 39 5.46E-05 5.46E-05 Osborne 1

18 13 6 43 85 1.17E-15 5.66E-30 Biggs EXP6

19 65 11 25 69 4.01E-02 4.01E-02 Osborne 2

20 31 9 22 49 1.40E-06 1.40E-06 Watson
21 12 12 31 67 3.71E-28 0 Extended Rosenbrock
22 12 12 17 41 4.82E-12 0 Extended Powell
23 5 4 30 54 2.25E-05 2.25E-05 Penalty I

24 8 4 32 60 9.38E-06 9.38E-06 Penalty II

25 11 9 24 51 5.62E-15 0 Variably dimensioned

26 9 9 23 50 4.41E-13 0 Trigonometric
27 9 9 3 12 1.23E-27 0 Brown almost linear

28 9 9 4 13 3.39E-15 0 Discrete boundary value

29 9 9 4 13 1.15E-13 0 Discrete integral equ.

30 9 9 9 27 1.30E-18 0 Broyden tridiagonal

31 9 9 13 31 2.41E-12 0 Broyden banded
32 12 9 5 23 3 m-n = 3 Linear full rank

33 12 9 5 23 2.64 m(m-1)/ (4m+2) = 2.64 Linear rank 1

34 12 9 5 23 4.142857 (m2+3m-6)/ (4m-6) = 4.14286 Linear rank 1 with zeros

35 9 12 6 30 2.10E-16 NA Chebyquad

36 3 2 378 574 1.232 NA Modified Beale (prob 5)

Problem 35 is Moré’s problem changed into an under-constrained example with more
parameters (12) than data (9). Problem 36 is altered version of the Beale problem (problem 5)
that required many consecutive steps, each causing a very small decrease in the sum of squares.

 11

The GN algorithm has an addition based on this phenomenon, where the trust radius is increased
by a factor based on the number of consecutive steps with function decreases.

Table II—Performance of the GN algorithm for the Moré test problems in terms of total number
of function evaluations on two platforms: Windows XP with Intel Q 9650 processor using
MinGW G95 Fortran (www.mingw.org) and MacBook Intel 64-bit OS 10.6.8 using GNU

Fortran 4.6.3 (gcc.gnu.org). Three different parameter starting values are used: near(0.001) the
answer, the Moré values, and the Moré values slightly perturbed (0.04). All final parameter

values were within a tolerance of 0.005 from the correct values.

Compiler start #evals

G95 near answer 746
G95 Moré 2114
G95 perturbed Moré 2579
GNU near answer 746
GNU Moré 2118
GNU perturbed Moré 2596

4. Comparison of GN to other minimization algorithms

There are several types of minimization algorithms. Ranked in terms of generality these are:

1. Those requiring only a function to be minimized that may not be differentiable.
2. Those requiring a differentiable function to be minimized.
3. Those minimizing the sum of squares of differentiable functions.

When the problem permits, we expect that type-3 algorithms (like GN) would work best in
terms of effectiveness (finding the solution) and efficiency (using a small number of function
evaluations). For an open-source algorithm that is meant to be used, understood, and possibly
modified by others, small program size is also important. Comparisons with GN are
summarized in Table III.

Table III—Comparisons of numbers of function evaluations to find the minimum and executable
lines of code for three algorithms of different types versus GN.

type algorithm #lines #probs #evals #evalsGN ratio

1 SUBPLEX 739 28 4480845 4637 966.3
2 MINUIT 8000 28 54890 4571 12.0
3 LMDIF 555 30 13896 4485 3.1
3 GN 323 37 5439 5439 1

These comparisons used the G95 compiler on a Windows XP system.

 12

The type-1 algorithm chosen was the SUBPLEX algorithm, by Tom Rowan, with 739
executable lines of Fortran, which uses the Simplex method (DMOZ website, see references).
SUBFLEX was easy to use and required only the tolerance for ending, which we took to be our
reltol = 3 × 10-7 , and the default choice (scale(1)=-1) for parameter scaling. When
minimizing the sum of squares from our 36 test problems for the 3 starting points, SUBPLEX
was out of tolerance (f tolerance = 5 × 10-5, x tolerance = 0.01) from the expected answer for
problems (starting points: 1 = near answer, 2 = Moré, 3 = perturbed Moré): 3 (2), 17(1,3),
20(2,3), 24(2), 26(2,3), 31(2,3), and 35(3). The SUBPLEX solutions, when used as starting
points for GN, were within tolerance of the GN final solution for 5/11 of these cases and were
improved by GN for 7/11 cases at the expense of 365 further function evaluations. For the 28
test problems that returned the expected solutions within tolerance for all 3 starting points, the
number of function evaluations required was 4,480,845 compared to 4637 using GN.

The type-2 algorithm used in the comparison is the steepest descent algorithm MIGRAD from
the MINUIT package developed at CERN by Fred James (MINUIT website, see references).
MINUIT is a large complex program with almost 8000 executable lines of code. Within
MINUIT we chose the steepest descent algorithm MIGRAD (“This is the best minimizer for
nearly all functions” according to the MINUIT documentation) where the function to be
minimized was the sum of squares for each of our 36 test problems. Setting the tolerance again
to be our reltol = 3 × 10-7 , we found that MINUIT was out of tolerance from the expected
answer for problems (starting points): 3 (1,2,3), 5(3), 17(1), 18(2,3), 24(2,3), 26(2,3), 31(2,3),
and 35(2). The MINUIT solutions, when used as starting points for GN, were within tolerance
of the GN final solutions for 6/14 of these cases and were improved by GN for 8/14 cases at the
expense of 754 further function evaluations. For the 28 test problems that returned the expected
solutions within tolerance for all 3 starting points, the number of function evaluations required
was 54,890 compared to 4571 using GN.

The most similar algorithm to GN that we could find in the open-source literature was LMDIF,
which is part of MINPACK (www.netlib.org) written by Garbow, Hillstrom, and Moré. Using
LMDIF, which has 555 executable lines of Fortran, on the same 36 test problems was very easy
and only one parameter needed to be specified, the tolerance for ending, which we took to be our
reltol = 3 × 10-7 . We found LMDIF could not be used on problem 35, where the number of
parameters exceeded the number of data, as this produced an input error. LMDIF was out of
tolerance from the expected answer for problems (starting points): 5(3), 14(2,3), 16(2,3),
18(2,3), and 26(2,3). The LMDIF solutions, when used as starting points for GN, were within
tolerance of the GN final solutions for 6/9 of these cases and were improved by GN for 3/9 cases
at the expense of 55 further function evaluations. For the 30 test problems that returned the
expected solutions within tolerance for all 3 starting points, the number of function evaluations
required was 13,896 compared to 4,485 using GN. The problem-by-problem comparison for
just the normal starting point is shown in Table IV. Note that LMDIF has fewer evaluations
than GN only on problem 2 and that GN requires less than 70 evaluations for all problems
except the last.

Table IV—Number of function evaluations required for LMDIF versus GN, with the normal
starting point for the subset of 30 problems where LMDIF gave the expected result.

Problem LMDIF GN

1 54 36
2 29 61
3 50 41

 13

4 46 45
6 42 38
7 35 31
8 21 18
9 34 24

10 474 52
11 77 58
12 25 14
13 1001 34
15 67 44
17 93 39
19 148 69
20 51 49
21 214 67
22 2601 41
23 119 54
24 591 60
25 101 51
27 21 12
28 41 13
29 41 13
30 51 27
31 83 31
32 21 23
33 22 23
34 21 23
36 600 574

totals 6774 1665

5. Discussion and Conclusion

The GN algorithm is less general than other minimization algorithms in that it minimizes the
sum of squares of differentiable functions rather than a general function. However for problems
of this type, and in particular for our 36 test problems, in comparison to other open source
algorithms we find that it is superior in terms of 1) effectiveness (ability to find the solution), 2)
efficiency (number of function evaluations required for convergence), and 3) complexity
(number of executable lines of code).

This method was developed as part of the experimental magnetic-fusion-energy program at Los
Alamos and has been in use for 28 years with good success. We hope it will now be of use to a
wider audience. Note that it can be efficiently used for linear equations; it takes only one
additional function evaluation to confirm the solution.

Some “tricks” and insights discovered include:

1. Computing the machine numerical precision by compiler function.
2. By augmenting the diagonal of the Hessian with a small number related to machine

precision we are assured a solution for the Newton step, even when the Hessian itself
is singular.

 14

3. Rank-1 updates of the Jacobian, without resorting to a full Jacobian recalculation.
4. Limiting the range of trust radius change.
5. Imposing a minimum on the Cauchy step--important when starting near the solution.
6. Increasing the trust radius based on having a long run of function decreases.
7. Automatic updating of the scaling vector by averaging with the current parameter

absolute value.
8. The importance of tuning the GN algorithm parameters based on the performance for

test problems.

Acknowledgement

This work was performed with partial support from funding from the National Institute of
Allergy and Infectious Diseases under contract No. HHSN272201000046C.

References

1. Levenberg, K. (1944), “A Method for the Solution of Certain Problems in Least
Squares”, Quart. Appl. Math. 2, 164-168 (1944).

2. Marquardt, D. (1963), “An algorithm for Least-Squares Estimation of Nonlinear
Parameters”, SIAM J. Appl. Math. 11, 431-441 (1963).

3. Dennis, J.E. and Schnabel, R.B. (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, (1983) SIAM, 378p. in 1996 ed.

4. Davidon, W. C (1959), "Variable metric method for minimization", SIAM Journal on
Optimization 1: 1–17, doi:10.1137/0801001, a reprint of Davidon, W.C. (1959),
“Variable metric method for minimization”, Argonne National Laboratory, Report ANL-
5990 (Rev.), Argonne, Illinois.

5. Broyden, C. G. (1970), "The convergence of a class of double-rank minimization
algorithms", Journal of the Institute of Mathematics and Its Applications 6: 76–90,
doi:10.1093/imamat/6.1.76

6. Fletcher, Roger (1987), Practical methods of optimization (2nd ed.), New York: John
Wiley & Sons, ISBN 978-0-471-91547-8

7. Goldfarb, D. (1970), "A Family of Variable Metric Updates Derived by Variational
Means", Mathematics of Computation 24 (109): 23–26, doi:10.1090/S0025-5718-1970-
0258249-6

8. Shanno, David F.; Kettler, Paul C. (July 1970), "Optimal conditioning of quasi-Newton
methods", Math. Comput. 24 (111): 657–664, doi:10.1090/S0025-5718-1970-0274030-6,
MR42:8906

9. Moré, J.J., Garbow, B.S., and Hillstrom, K.E., “Testing Unconstrained Optimization
Software”, ACM transactions on Mathematical Software, 7, 1 (1981).

10. DMOZ website,
www.dmoz.org/Computers/Programming/Languages/Fortran/Source_Code/Optimization

11. MINUIT obtained from https://github.com/ramos/minuit/downloads).

 15

Appendix A—Solution of 0)(=Φ μ

Let)(μΦ be the magnitude of the “hook” step () gIHx 1)(−+−= μμ minus some specified
length δ. In other words, 0)(=Φ μ expresses the condition that the magnitude of the step is the
trust radius δ. In order to solve for the step x with a given radius δ, we need to first solve the
equation

0)(=Φ μ ,

for μ, and then obtain the step from () gIHx 1)(−+−= μμ .

How do we solve 0)(=Φ μ ? Motivated by the one-dimensional case and following Dennis and
Schnabel, a local model is used for)(μΦ ,

δ
μβ

αμ −
+

≅Φ)(, (A.1)

for some scalar parameters α and β. Assume a current value μc of μ. The current values of
αc and βc are obtained from the two equations

()2)(

)(

cc

c
c

c
cc

c
c

μβ
α

μ

δ
μβ

α
μ

+
−=Φ′

−
+

=Φ

 ,

which when solved give

()

()
)(

)(
)(

)(2

c

cc
cc

c

cc
c

μ
δμ

μβ

μ
δμ

α

Φ′
+Φ

−−=

Φ′
+Φ

−=
 . (A.2)

The iteration of μ (“hook search”) based on the local model is

c
c

c β
δ
α

μ −=+ ,

obtained by solving Eq. (A.1) for μ. By substituting from Eq. (A.2), this gives

)(
)()(

c

c

c

cc
c μ

μ
δ

δμ
μμ

Φ′
Φ+Φ

−=+ . (A.3)

The derivative with respect to μ of the column matrix x(μ) defined by

() gIHx 1)(−+= μμ can be obtained by taking the derivative of the equation
() gxIH =+)(μμ with respect to μ and then solving for)(μx . One obtains

 16

())()(1 μμμ
μ

xIHx
d
dx −+−=′≡ .

Therefore, from

δμμμ −≡Φ)()()(xx T , (A.4)

one finds that

)()(
)()()(

)()(
)()()(

1

μμ

μμμ

μμ

μμμ
xx

xIHx
xx

xx
T

T

T

T −+
−=

′
=Φ′ . (A.5)

Equations (A.3), (A.4), and (A.5) allow one to iteratively solve for μ, given δ.

Appendix B—Example for the case m=1, n=2

In this case there are two parameters and one residual r. The basic equations are:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂
∂
∂
∂

==

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=

=

y
rr
x
rr

rJg

y
r

y
r

x
r

y
r

x
r

x
r

JJH

y
r

x
rJ

rf

T

T
2

2

2

 .

The equation for step s is

() gsIH −=+ μ ,

or

∂r
∂x

⎛
⎝
⎜

⎞
⎠
⎟

2

+ μ
∂r
∂x

∂r
∂y

∂r
∂x

∂r
∂y

∂r
∂y

⎛

⎝
⎜

⎞

⎠
⎟

2

+ μ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

s = −g .

 17

The solution is

2
22

2

2

μμ

μ

μ

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

∂
∂

−

∂
∂

∂
∂

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=

y
r

x
r

x
r

y
r

x
r

y
r

x
r

y
r

s g .

Substituting for g, we get

r

y
r

x
r

y
r
x
r

s

μ+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂
∂
∂
∂

−=
22

 .

Thus there is a well-defined step directed down the gradient in the limit 0→μ , even though the
matrix H is singular.

One can verify that the same step is obtained if m is increased to any number by adding more
residuals having r = 0.

Appendix C—Updating the trust radius

Consider movement in the direction s, ||||/ ssx λ= and the value of)(λf as function of the λ .
From the definition of f, for x small

||||
2)0(

2)(

s
sgf

d
dxg

d
dff

T

T

=′

==′
λλ

λ
 .

The distance λ starts out at 0, where f takes the value 0f , and ends with the value

λ = || s || = sT s at the final point of the step, where)(λf takes value f . By fitting a quadratic
2

0)(λλλ baff ++≅ , the minimum occurs at

b
a
2

−=∗λ ,

where

 18

2
0

||||
||||

)0(

s
saff

b

fa
−−

=

′=
 ,

so that

r
s

b
a

−
=−=∗ 1

||||
2
1

2
λ (C.1)

with

sg
ff

sf
ff

r T2||||)0(
00

−
−

=
′−

−
= .

The quantity r is bounded above by 1 (when the curvature is negligible) and unbounded below
(when 0ff >). With the revised trust radius given by Eq. (C.1), which can be greater than the
last step if 2/1>r , a new value of μ and a new step are calculated as described in Appendix
A.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

